

# Vecow Co.,Ltd.

# **TEST REPORT**

**REPORT NUMBER** 200500247TWN-001

**ISSUE DATE** Jun. 16, 2020

**PAGES** 68

© 2020 INTERTEK





Intertek Report No.: 200500247TWN-001 Page: 1 of 68

# **EMC** TEST REPORT

| Applicant:             | Vecow Co.,Ltd.                                                   |  |  |  |
|------------------------|------------------------------------------------------------------|--|--|--|
|                        | 3F, No. 10, Jiankang Rd., Zhonghe Dist., New Taipei City, Taiwan |  |  |  |
| Product:               | MTC-7000 Series Multi-touch panel pc                             |  |  |  |
| Model No.:             | MTC-7XXX-XXX, MTC-7010W                                          |  |  |  |
| Brand Name:            | Vecow                                                            |  |  |  |
| Test Method/ Standard: | EN 55032: 2015/AC:2016                                           |  |  |  |
|                        | EN IEC 61000-3-2: 2019                                           |  |  |  |
|                        | EN 61000-3-3: 2013+A1: 2019                                      |  |  |  |
|                        | EN 55035: 2017                                                   |  |  |  |
| Test By:               | Intertek Testing Services Taiwan Ltd.,                           |  |  |  |
|                        | Hsinchu Laboratory                                               |  |  |  |
|                        | No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li,                 |  |  |  |
|                        | Shiang-Shan District, Hsinchu City, Taiwan                       |  |  |  |



Prepared and Checked by:

Alanwu

Alan Wu Engineer

Approved by:

tron Chiu

Lion Chiu Group Leader

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.



# **Revision History**

| Report No.       | Issue Date    | Revision Summary |
|------------------|---------------|------------------|
| 200500247TWN-001 | Jun. 16, 2020 | Original report  |



# **Table of Contents**

| 1. General Information                                                 | 6         |
|------------------------------------------------------------------------|-----------|
| 1.1 Identification of the EUT                                          | 6         |
| 1.2 Adapter information                                                | 6         |
| 1.3 Additional information about the EUT                               | 6         |
| 2. Test Summary                                                        | 7         |
| 3. Test Specifications                                                 |           |
| 3.1 Standards                                                          |           |
| 3.2 Test Facility accreditation                                        |           |
| 3.3 Classification of MME                                              | 9         |
| 3.4 Performance criteria                                               | 9         |
| 3.5 Mode of operation during the test                                  |           |
| 3.6 Peripherals equipment                                              | 10        |
|                                                                        |           |
| 4. Conducted Emission Test                                             |           |
| 4.1 lest Procedure                                                     |           |
| 4.2 Test Equipment                                                     |           |
| 4.3 Conducted Emission Limit                                           |           |
| 4.4 Conducted Emission Data                                            |           |
| 4.5 Telecommunication Port Emission Test                               | 15        |
| 4.5.1 Test Procedure                                                   | 15<br>1 Г |
| 4.5.2 Test Equipment                                                   |           |
| 4.5.5 Limits of conducted common mode (asymmetric mode) disturbance at | 16        |
| 4.5.4 Tolocommunication Port Emission Data                             | 10        |
|                                                                        | 1/        |
| 5. Radiated Emission Test                                              | 18        |
| 5.1.1 Test Procedure from 30 MHz to 1000 MHz                           | 18        |
| 5.1.2 Test Equipment                                                   | 19        |
| 5.1.3 Radiated Emission Limit                                          | 20        |
| 5.1.4 Radiated Emission Test Data from 30 MHz to 1000 MHz              | 21        |
| 5.2.1 Test Procedure above 1 GHz                                       | 23        |
| 5.2.2 Test Equipment                                                   | 24        |
| 5.2.3 Radiated Emission Limit                                          | 24        |
| 5.2.4 Radiated Emission Test Data above 1 GHz                          | 25        |
| 6. Harmonics Test                                                      | 27        |
| 7. Voltage Fluctuations-Flicker Test                                   |           |
| 7.1 Test Procedure                                                     |           |
| 7.2 Test Equipment                                                     |           |
| 7.3 Test result                                                        |           |
| 8. Electrostatic Discharge Immunity Test                               |           |

# intertek

Total Quality. Assured.

# **TEST REPORT**

| 8.1 Purpose                                                                | 30       |
|----------------------------------------------------------------------------|----------|
| 8.2 Test Set-Op                                                            | 50<br>20 |
| 8.4 Test Equipment                                                         | 20       |
| 8.4 Test Equipment                                                         | 50       |
| 8.5 Test Result                                                            | 51       |
| 9. Radiated, Radio-Frequency, Electromagnetic Field Immunity Test          | 34       |
| 9.1 Purpose                                                                | 34       |
| 9.2 Test Set-Up                                                            | 34       |
| 9.3 Test Specification                                                     | 35       |
| 9.4 Test Equipment                                                         | 35       |
| 9.5 Generation of the Electromagnetic Field                                | 36       |
| 9.6 Test Results                                                           | 36       |
| 10 Electrical Fact Transiant (Burst Immunity Tast                          | 77       |
| 10.1 Durpase                                                               | /د<br>حد |
| 10.1 Purpose                                                               | 57       |
| 10.2 Test Set-Op                                                           | 37       |
|                                                                            | 37       |
| 10.4 lest Equipment                                                        | 38       |
| 10.5 Test Results                                                          | 38       |
| 11. Surge Immunity Test                                                    | 39       |
| 11.1 Purpose                                                               | 39       |
| 11.2 Test Set-Up                                                           | 39       |
| 11.3 Test Specification                                                    | 39       |
| 11.4 Test Equipment                                                        | 40       |
| 11.5 Test Results                                                          | 40       |
| 11.5.1 Main power ports                                                    | 40       |
|                                                                            |          |
| 12. Immunity to Conducted Disturbances, Inducted by Radio-Frequency Fields |          |
| 12.1 Purpose                                                               | 41       |
| 12.2 Test Set-Up                                                           | 41       |
| 12.3 Test Specification                                                    | 42       |
| 12.4 lest Equipment                                                        | 42       |
| 12.5 Generation and Calibration of the Disturbance Signal                  | 43       |
| 12.6 Test Results                                                          | 43       |
| 13. Power Frequency Magnetic Field Immunity Test                           | 44       |
| 13.1 Purpose                                                               | 44       |
| 13.2 Test Set-Up                                                           | 44       |
| 13.3 Test Condition                                                        | 44       |
| 13.4 Test Equipment.                                                       | 45       |
| 13.5 Test Result                                                           | 45       |
|                                                                            |          |
| 14. Voltage Dips, Short Interruptions and Voltage Variations Immunity Test | 46       |
| 14.1 Purpose                                                               | 46       |
| 14.2 Iest Set-Up                                                           | 46       |
| 14.3 lest Specification                                                    | 46       |
| 14.4 Test Equipment                                                        | 47       |

# intertek Total Quality. Assured.

#### **TEST REPORT**

#### Intertek Report No.: 200500247TWN-001 Page: 5 of 68

| 14.5 Generation of the Disturbance Signal                         | 47  |
|-------------------------------------------------------------------|-----|
| 14.6 Test Result                                                  | 47  |
| Appendix A: Uncertainty                                           | /18 |
|                                                                   | 40  |
| Appendix B1: External photo of EUT                                | 49  |
| Appendix B2: Internal photo of EUT                                | 53  |
| Appendix C1: Conducted Emission Test Set-up                       | 58  |
| Appendix C1: Conducted Emission lest set up                       |     |
| Appendix C3: Radiated Emission Test Set-up (Below 1GHz)           |     |
| Appendix C4: Radiated Emission Test Set-up (Above 1GHz)           |     |
| Appendix C5: Harmonics\ Flicker Test Set-up                       |     |
| Appendix C6: ESD Test Set-up                                      | 63  |
| Appendix C7: RS Test Set-up                                       | 64  |
| Appendix C8: EFT Signal Test Set-up                               | 65  |
| Appendix C9: EFT\ Surge\Dip Test Set-up                           |     |
| Appendix C10: CS Test Set-up                                      | 67  |
| Appendix C11: Power Frequency Magnetic Field Immunity Test Set-up | 68  |



#### **1.** General Information

#### 1.1 Identification of the EUT

| Product:               | MTC-7000 Series Multi-touch panel pc                  |
|------------------------|-------------------------------------------------------|
| Model No.:             | MTC-7010W                                             |
| Rated Power:           | DC 24 V from adapter                                  |
| Power Cord:            | 3 C × 0.75 mm <sup>2</sup> × 2 meter unshielded cable |
| Sample receiving date: | May 22, 2020                                          |
| Sample condition:      | Workable                                              |
| Testing date:          | May 22, 2020 ~ Jun. 04, 2020                          |

#### **1.2 Adapter information**

The EUT will be supplied with a power supply from below list:

| No.     | Model no.    | Specification                    |  |
|---------|--------------|----------------------------------|--|
| Adapter | FSP120-AABN2 | INPUT: 100-240Vac, 50-60Hz, 1.8A |  |
|         |              | OUTPUT: 24Vdc, 5.0A, 120W        |  |

#### 1.3 Additional information about the EUT

The customer confirmed MTC-7XXX-XXX is a series model to MTC-7010W (EUT), the different model numbers are served as marketing strategy.

For model: MTC-7XXX-XXX

The customer confirmed denote of "X" in model number as 0~9, A~Z, or blank for marketing purpose.



#### 2. Test Summary

| Emission                    |                               |        |                                             |  |  |  |
|-----------------------------|-------------------------------|--------|---------------------------------------------|--|--|--|
| Standard                    | Test Type                     | Result | Remarks                                     |  |  |  |
|                             | Conducted Emission            | PASS   | Meet Class B Limit                          |  |  |  |
| EN 55032: 2015/AC: 2016     | ISN                           | PASS   | Meet Class B Limit                          |  |  |  |
|                             | Radiated Emission             | PASS   | Meet Class B Limit                          |  |  |  |
| EN IEC 61000-3-2: 2019      | Harmonic current Emissions    | N/A    | The active input power<br>is lower than 75W |  |  |  |
| EN 61000-3-3: 2013+A1: 2019 | Voltage fluctuation & Flicker | PASS   | Meet the requirements                       |  |  |  |

| Immunity<br>(EN 55035: 2017)                |                         |                                                                                                |                                                        |                                                                                                                     |  |  |
|---------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| Standard                                    | Performance<br>Criteria | Result                                                                                         |                                                        |                                                                                                                     |  |  |
| IEC 61000-4-2: 2008                         | ESD                     | Criterion B                                                                                    | PASS                                                   | Meets the requirements of<br>Performance Criterion A                                                                |  |  |
| IEC 61000-4-3: 2006<br>+AMD1:2007+AMD2:2010 | RS                      | Criterion A                                                                                    | PASS                                                   | Meets the requirements of<br>Performance Criterion A                                                                |  |  |
| IEC 61000-4-4: 2012                         | EFT                     | Criterion B                                                                                    | PASS                                                   | Meets the requirements of<br>Performance Criterion A                                                                |  |  |
| IEC 61000-4-5: 2014/<br>AMD1: 2017          | Surge                   | Criterion B                                                                                    | PASS                                                   | Meets the requirements of<br>Performance Criterion A                                                                |  |  |
| IEC 61000-4-6: 2013                         | CS                      | Criterion A                                                                                    | PASS                                                   | Meets the requirements of<br>Performance Criterion A                                                                |  |  |
| IEC 61000-4-8: 2009                         | Magnetic<br>Field       | Criterion A                                                                                    | PASS Meets the requirements of Performance Criterion A |                                                                                                                     |  |  |
| IEC 61000-4-11:2004+<br>AMD1:2017           | Dip                     | <ol> <li>&gt;95% reduction-<br/>Criterion B</li> <li>30% reduction-<br/>Criterion C</li> </ol> | PASS                                                   | Meets the requirements of<br>Voltage Dips:<br>1. >95% reduction-<br>Criterion A<br>2. 30% reduction-<br>Criterion A |  |  |
|                                             | Interruption            | 3. >95% reduction-<br>Criterion C                                                              | PASS                                                   | 3. >95% reduction-<br>Criterion C                                                                                   |  |  |

Note: Please note that the test results with statement of conformity, the decision rules which are based on: Safety Testing: the specification, standard or IEC Guide 115.

Other Testing: the specification, standard and not taking into account the measurement uncertainty.



#### 3. Test Specifications

#### 3.1 Standards

**EN 55032: 2015/AC: 2016** Electromagnetic compatibility of multimedia equipment - Emission requirements

**EN IEC 61000-3-2: 2019** Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤16 A per phase)

EN 61000-3-3: 2013+A1: 2019 Electromagnetic compatibility (EMC) -Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional connection

**EN 55035: 2017** Electromagnetic compatibility of multimedia equipment. Immunity requirements

#### 3.2 Test Facility accreditation

Intertek Testing Services Taiwan Ltd., Hsinchu Laboratory is accredited in respect of laboratory and the accreditation criterion is ISO/IEC 17025.

| Certification                | Bureau | Code                                                                                               | Accreditation Criteria           |  |
|------------------------------|--------|----------------------------------------------------------------------------------------------------|----------------------------------|--|
|                              | TAF    | 0597                                                                                               | ISO/IEC 17025                    |  |
| Accreditation<br>Certificate | BSMI   | SL2-IS-E-0024<br>SL2-IN-E-0024<br>SL2-A1-E-0024<br>SL2-R2-E-0024<br>SL2-R1-E-0024<br>SL2-L1-E-0024 | ISO/IEC 17025                    |  |
| Site Filling Code :          | FCC    | 93910                                                                                              | Test facility list<br>& NSA Data |  |
|                              | IC     | 2042D-1, 2042D-2                                                                                   | Test facility list<br>& NSA Data |  |
|                              | VCCI   | R-1534<br>C-1618<br>T-11586<br>G-10049                                                             | Test facility list<br>& NSA Data |  |



#### **3.3 Classification of MME**

The MME equipment defines Class A equipment and Class B equipment associated with two types of end-use environment.

The Class B requirements for equipment are intended to offer adequate protection to broadcast services within the residential environment.

Equipment intended primarily for use in a residential environment shall meet the Class B limits. All other equipment shall comply with the Class A limits.

Broadcast receiver equipment is class B equipment.

#### 3.4 Performance criteria

The performance criteria listed below are based on those regulated in the standard.

#### Criteria A:

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

#### Criteria B:

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.



Criteria C:

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

#### **3.5 Mode of operation during the test**

The EUT was supplied with 230Vac, 50Hz.

- (1) The EUT was setup in full load condition.
- (2) Ethernet port 1 & 2 connected to the WAP.
- (3) Power ON EUT, executed "ping command" at EUT & WAP & Notebook PC and connected each other.
- (4) EUT executed "Burn in" & Play color bar.
- (5) Start test.

#### 3.6 Peripherals equipment

| Peripherals               | Brand     | Brand Model No. Serial No. |                              | Description of Data Cable                                                                              |  |
|---------------------------|-----------|----------------------------|------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Notebook PC               | HP        | HSTNN-Q96C                 | 5CD8021S9J                   | N/A                                                                                                    |  |
| Monitor                   | DELL      | P2210t                     | CN-0R945K-744<br>45-0BA-588S | <ol> <li>Shielded Display cable</li> <li>1.8meter</li> <li>Shielded DVI cable 1.5<br/>meter</li> </ol> |  |
| Wirless AP                | BUFFALO   | WZR-AGL300NH               | N/A                          | Unshielded RJ-45 cable 6 meter                                                                         |  |
| Keyboard                  | ViewSonic | VS10230                    | P80053802065                 | N/A                                                                                                    |  |
| Mouse                     | HP        | M-UAE96                    | N/A                          | N/A                                                                                                    |  |
| USB 3.0<br>Dongle         | Kingston  | DTSE9G2/8GB                | PR180707B003<br>589-0000288  | N/A                                                                                                    |  |
| USB 3.0<br>Dongle         | Kingston  | DTSE9G2/8GB                | PR180707B003<br>589-0000090  | N/A                                                                                                    |  |
| RS232<br>dummy load<br>X2 | Apple     | MT531TA/A                  | F85LG24QF196                 | N/A                                                                                                    |  |



#### 4. Conducted Emission Test

#### **4.1 Test Procedure**



The EUT along with its peripherals were placed on a 1.0 meter(W)×1.5meter(L) and 0.8 meter in height wooden table and the EUT was adjusted to maintain a 0.4meter space from a vertical reference plane. The EUT was connected to power mains through a Artificial Mains Network (AMN), which provided 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.

The excess power cable between the EUT and the AMN was bunded. All connecting cables of EUT and peripherals were moved to find the maximum emission



#### 4.2 Test Equipment

| Test Equipment/<br>Test site | Brand  | Model No.                | Serial No.       | Calibration<br>Date | Next<br>Calibration<br>Date |
|------------------------------|--------|--------------------------|------------------|---------------------|-----------------------------|
| EMI Test<br>Receiver         | R&S    | ESR7                     | 101822           | 2019/06/19          | 2020/06/17                  |
| LISN                         | R&S    | ENV216                   | 101160           | 2019/07/17          | 2020/07/15                  |
| LISN                         | R&S    | ESH3-Z5                  | 835239/023       | 2019/09/23          | 2020/09/21                  |
| CON-2 Cable                  | SUHNER | EMCCFD300-B<br>M-NM-6000 | 170502           | 2020/04/30          | 2021/04/29                  |
| Test software                | Audix  | e3                       | V4.20040112<br>L | NCR                 | NCR                         |

Note: No Calibration Required (NCR).

#### 4.3 Conducted Emission Limit

|                    | Maximum RF Line Voltage     |      |  |  |  |
|--------------------|-----------------------------|------|--|--|--|
| Frequency<br>(MHz) | Class A Equipment<br>(dBμV) |      |  |  |  |
|                    | Q.P.                        | Avg. |  |  |  |
| 0.15~0.50          | 79                          | 66   |  |  |  |
| 0.50~5.00          | 73                          | 60   |  |  |  |
| 5.00~30.0          | 73                          | 60   |  |  |  |



#### 4.4 Conducted Emission Data

| Phase:                | Live Line |     |            |                      |  |  |  |
|-----------------------|-----------|-----|------------|----------------------|--|--|--|
| Temperature:          | 24        | °C  | Model No.: | MTC-7010W            |  |  |  |
| Relative Humidity:    | 58        | %   | Test Date: | May 29 <i>,</i> 2020 |  |  |  |
| Atmospheric Pressure: | 1008      | hPa | Remark:    | N/A                  |  |  |  |

| Frequency | Corr.<br>Factor | Reading<br>OP | Level<br>OP | Limit<br>OP | Reading<br>AV | Level<br>AV | Limit<br>AV | Mar<br>(d | gin<br>B) |
|-----------|-----------------|---------------|-------------|-------------|---------------|-------------|-------------|-----------|-----------|
| (MHz)     | (dB)            | (dĎu∛)        | (dằu∛)      | (dĎu∛)      | (dBu∛)        | (dBu∛)      | (dBu∛)      | QP `      | ÝΑ        |
| 0.426     | 9.78            | 39.57         | 49.35       | 79.00       | 33.93         | 43.71       | 66.00       | -29.65    | -22.29    |
| 0.459     | 9.79            | 39.55         | 49.34       | 79.00       | 33.65         | 43.44       | 66.00       | -29.66    | -22.56    |
| 0.617     | 9.80            | 34.16         | 43.96       | 73.00       | 26.37         | 36.17       | 60.00       | -29.04    | -23.83    |
| 0.963     | 9.81            | 32.05         | 41.86       | 73.00       | 22.00         | 31.81       | 60.00       | -31.14    | -28.19    |
| 1.367     | 9.82            | 33.15         | 42.97       | 73.00       | 20.64         | 30.46       | 60.00       | -30.03    | -29.54    |
| 1.772     | 9.83            | 31.09         | 40.91       | 73.00       | 25.28         | 35.11       | 60.00       | -32.09    | -24.89    |
| 2.133     | 9.83            | 27.64         | 37.48       | 73.00       | 20.66         | 30.50       | 60.00       | -35.52    | -29.50    |

Remark:

- 1. Corr. Factor (dB) = AMN Factor (dB) + Cable Loss (dB)
- 2. Level (dBuV) = Corr. Factor (dB) + Reading (dBuV)
- 3. Margin (dB) = Level (dBuV) Limit (dBuV)





| Phase:                | Neutral Line |     |            |              |  |  |
|-----------------------|--------------|-----|------------|--------------|--|--|
| Temperature:          | 24           | °C  | Model No.: | MTC-7010W    |  |  |
| Relative Humidity:    | 58           | %   | Test Date: | May 29, 2020 |  |  |
| Atmospheric Pressure: | 1008         | hPa | Remark:    | N/A          |  |  |

| Frequency | Corr.<br>Factor | Reading<br>QP | Level<br>QP | Limit<br>QP | Reading<br>AV | Level<br>AV | Limit<br>AV | Mar<br>(d | gin<br>B) |
|-----------|-----------------|---------------|-------------|-------------|---------------|-------------|-------------|-----------|-----------|
| (MHz)     | (dB)            | (dBu∛)        | (dBu∛)      | (dBu∛)      | (dBuV)        | (dBu∛)      | (dBu∛)      | QP        | AV        |
| 0.428     | 9.78            | 36.87         | 46.65       | 79.00       | 34.75         | 44.53       | 66.00       | -32.35    | -21.47    |
| 0.459     | 9.79            | 40.26         | 50.05       | 79.00       | 34.89         | 44.68       | 66.00       | -28.95    | -21.32    |
| 0.604     | 9.81            | 33.01         | 42.82       | 73.00       | 24.19         | 34.00       | 60.00       | -30.18    | -26.00    |
| 1.049     | 9.82            | 31.91         | 41.73       | 73.00       | 22.21         | 32.03       | 60.00       | -31.27    | -27.97    |
| 1.381     | 9.83            | 33.32         | 43.15       | 73.00       | 27.27         | 37.10       | 60.00       | -29.85    | -22.90    |
| 1.772     | 9.84            | 30.59         | 40.43       | 73.00       | 24.32         | 34.16       | 60.00       | -32.57    | -25.84    |

#### Remark:

- 1. Corr. Factor (dB) = AMN Factor (dB) + Cable Loss (dB)
- 2. Level (dBuV) = Corr. Factor (dB) + Reading (dBuV)
- 3. Margin (dB) = Level (dBuV) Limit (dBuV)





#### 4.5 Telecommunication Port Emission Test

#### 4.5.1 Test Procedure



#### 4.5.2 Test Equipment

| Test<br>Equipment/<br>Test site | Brand  | Model No.            | Serial No.   | Calibration<br>Date | Next<br>Calibration<br>Date |
|---------------------------------|--------|----------------------|--------------|---------------------|-----------------------------|
| EMI Receiver                    | R&S    | ESCI                 | 100059       | 2019/11/05          | 2020/11/03                  |
| Two-Line<br>V-Network           | R&S    | ENV216               | 101159       | 2019/06/12          | 2020/06/10                  |
| ISN                             | TESEQ  | ISN T8               | 24556        | 2020/05/24          | 2021/05/23                  |
| LISN                            | R&S    | ESH3-Z5              | 835239/023   | 2019/09/23          | 2020/09/21                  |
| CON-2 Cable                     | SUHNER | EMCCFD300-BM-NM-6000 | 170502       | 2020/04/30          | 2021/04/29                  |
| Test software                   | Audix  | е3                   | V4.20040112L | NCR                 | NCR                         |

Note: No Calibration Required (NCR).



# 4.5.3 Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports

|                    | Voltage limits              |          |  |  |  |  |
|--------------------|-----------------------------|----------|--|--|--|--|
| Frequency<br>(MHz) | Class A Equipment<br>(dBµV) |          |  |  |  |  |
|                    | Q.P.                        | Avg.     |  |  |  |  |
| 0.15~0.50          | 97 to 87                    | 84 to 74 |  |  |  |  |
| 0.50~30.00         | 87                          | 74       |  |  |  |  |



#### 4.5.4 Telecommunication Port Emission Data

| Test port:            | ISN 1Gbps |     |            |              |  |  |
|-----------------------|-----------|-----|------------|--------------|--|--|
| Temperature:          | 24        | °C  | Model No.: | MTC-7010W    |  |  |
| Relative Humidity:    | 58        | %   | Test Date: | May 29, 2020 |  |  |
| Atmospheric Pressure: | 1008      | hPa | Remark:    | N/A          |  |  |

| Frequency | Corr.<br>Factor | Reading<br>OP | Level<br>OP | Limit<br>OP | Reading<br>AV | Level<br>AV | Limit<br>AV | Mar<br>(d | gin<br>B) |
|-----------|-----------------|---------------|-------------|-------------|---------------|-------------|-------------|-----------|-----------|
| (MHz)     | (dB)            | (dằu∛)        | (dằu∛)      | (dĎu∛)      | (dBu∛)        | (dBu∛)      | (dBu∛)      | QP `      | ´ ΑV      |
| 0.739     | 9.79            | 38.45         | 48.24       | 87.00       | 32.81         | 42.60       | 74.00       | -38.76    | -31.40    |
| 1.403     | 9.74            | 44.79         | 54.53       | 87.00       | 37.93         | 47.66       | 74.00       | -32.47    | -26.34    |
| 1.725     | 9.72            | 43.55         | 53.28       | 87.00       | 37.35         | 47.07       | 74.00       | -33.72    | -26.93    |
| 2.225     | 9.71            | 43.61         | 53.32       | 87.00       | 37.79         | 47.50       | 74.00       | -33.68    | -26.50    |
| 4.598     | 9.71            | 44.93         | 54.64       | 87.00       | 37.19         | 46.90       | 74.00       | -32.36    | -27.10    |
| 8.235     | 9.73            | 41.95         | 51.68       | 87.00       | 35.02         | 44.75       | 74.00       | -35.32    | -29.25    |

#### Remark:

- 1. Corr. Factor (dB) = ISN Factor (dB) + Cable Loss (dB)
- 2. Level (dBuV) = Corr. Factor (dB) + Reading (dBuV)
- 3. Margin (dB) = Level (dBuV) Limit (dBuV)





#### 5. Radiated Emission Test

#### 5.1.1 Test Procedure from 30 MHz to 1000 MHz

The figure below shows the test setup, which is utilized to make these measurements. Side View





Radiated testing was performed at a 3 meters semi-anechoic chamber. The equipment under test were placed on a turntable top 0.8 meter above ground. The table was 360 degrees to determine the position of the highest radiation. EUT is set 3 meters from the EMI receiving antenna, which is mounted on a variable height mast. The antenna height is varied between one meter and four meters above ground to find the maximum value of the field strength. Both horizontal polarization and vertical polarization of the antenna was set to conduct the measurement.

The bandwidth was set on the EMI meter 120 kHz.

The levels are quasi peak value readings. The frequency spectrum from 30 MHz to 1000 MHz was investigated.

| Test Equipment/<br>Test site         | Brand   | Model No.              | Model No. Serial No. |            | Next<br>Calibration<br>Date |
|--------------------------------------|---------|------------------------|----------------------|------------|-----------------------------|
| EMI Test<br>Receiver                 | R&S     | ESU40                  | 100381               | 2019/06/05 | 2020/06/03                  |
| Bi-log Hybrid<br>Antenna             | ETC     | MCTD2786               | BL13S03017           | 2019/06/27 | 2020/06/25                  |
| 966-1(A) Cable                       | SUHNER  | SMA /<br>SUCOFLEX 104  | 29510614             | 2020/04/13 | 2021/04/12                  |
| 966-1(B) Cable                       | JUNFLON | SMA /<br>J12J100880-00 | AUG-26-08-001        | 2020/04/13 | 2021/04/12                  |
| 966-1_3m<br>Semi-Anechoic<br>Chamber | 966_1   | CEM-966_1              | N/A                  | 2020/03/02 | 2021/03/01                  |
| Test software                        | Audix   | e3                     | V4.20040112L         | NCR        | NCR                         |

#### 5.1.2 Test Equipment

Note: No Calibration Required (NCR).



#### 5.1.3 Radiated Emission Limit

| Frequency<br>(MHz) | Distance(m) | Class A Equipment<br>(dBµV/m) |
|--------------------|-------------|-------------------------------|
| 30~230             | 3           | 50                            |
| 230~1000           | 3           | 57                            |

Note:

1. The tighter limit shall apply at the edge between two frequency bands.

2. Distance refers to the distance in meters between the EUT to antenna.



#### 5.1.4 Radiated Emission Test Data from 30 MHz to 1000 MHz

| Polarity:             | Vertical |     |            |              |
|-----------------------|----------|-----|------------|--------------|
| Temperature:          | 24       | °C  | Model No.: | MTC-7010W    |
| Relative Humidity:    | 55       | %   | Test Date: | May 28, 2020 |
| Atmospheric Pressure: | 1008     | hPa | Remark:    | N/A          |

| Freq                                                                     | Pol/Phase                                                                        | Factor                                                      | Read<br>Level                                               | Level                                                       | Limit<br>Line                                                        | Over<br>Limit                                               | Remark                                       |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|
| MXz                                                                      |                                                                                  | āB                                                          | dBu∛                                                        | āBu∛/m                                                      | āBu∛/m                                                               | āB                                                          |                                              |
| 32.910<br>117.300<br>475.230<br>521.790<br>594.540<br>714.820<br>952.470 | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL | 24.75<br>17.81<br>26.22<br>27.26<br>27.90<br>29.71<br>33.53 | 16.90<br>22.44<br>24.69<br>20.48<br>23.33<br>22.68<br>17.99 | 41.65<br>40.25<br>50.90<br>47.75<br>51.22<br>52.39<br>51.51 | S0.00<br>S0.00<br>S7.00<br>S7.00<br>S7.00<br>S7.00<br>S7.00<br>S7.00 | -8.35<br>-9.75<br>-6.10<br>-9.25<br>-5.78<br>-4.61<br>-5.49 | QP<br>QP<br>QP<br>QP<br>QP<br>QP<br>QP<br>QP |

Remark:

- 1. Factor = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Level  $(dB\mu V/m) = Factor (dB) + Read Level (dB\mu V)$
- 3. Over Limit (dB) = Level (dB $\mu$ V/m) Limit Line (dB $\mu$ V/m)





| Polarity:             | Horizontal |     |            |              |
|-----------------------|------------|-----|------------|--------------|
| Temperature:          | 24         | °C  | Model No.: | MTC-7010W    |
| Relative Humidity:    | 55         | %   | Test Date: | May 28, 2020 |
| Atmospheric Pressure: | 1008       | hPa | Remark:    | N/A          |

| Freq                                                          | Pol/Phase                                                                        | Factor                                             | Read<br>Level                                      | Level                                              | Limit<br>Line                                               | Over<br>Limit                                           | Remark                           |
|---------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|----------------------------------|
| MXz                                                           |                                                                                  | dB                                                 | ₫₿uΫ                                               | ₫Bu∛/m                                             | ₫Bu∛7m                                                      | āB                                                      |                                  |
| 94.990<br>180.350<br>354.950<br>475.230<br>594.540<br>714.820 | HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL | 16.10<br>17.08<br>23.93<br>26.22<br>27.90<br>29.71 | 19.77<br>20.63<br>17.91<br>21.16<br>18.51<br>14.35 | 35.86<br>37.71<br>41.84<br>47.37<br>46.41<br>44.07 | S0.00<br>S0.00<br>S7.00<br>S7.00<br>S7.00<br>S7.00<br>S7.00 | -14.14<br>-12.29<br>-15.16<br>-9.63<br>-10.59<br>-12.93 | QP<br>QP<br>QP<br>QP<br>QP<br>QP |

Remark:

- 1. Factor = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Level (dB $\mu$ V/m) = Factor (dB) + Read Level (dB $\mu$ V)
- 3. Over Limit (dB) = Level (dB $\mu$ V/m) Limit Line (dB $\mu$ V/m)





#### 5.2.1 Test Procedure above 1 GHz

The figure below shows the test setup, which is utilized to make these measurements.



Radiated testing was performed at a 3 meters semi-anechoic chamber. The equipment under test were placed on a turntable top 0.8 meter above ground. The table was 360 degrees to determine the position of the highest radiation. EUT is set 3 meters from the EMI receiving antenna, which is mounted on a variable height mast. The antenna height is varied between one meter and four meters above ground to find the maximum value of the field strength. Both horizontal polarization and vertical polarization of the antenna was set to conduct the measurement.

The bandwidth was set on the EMI meter 1 MHz.

The levels are peak and average value readings. The frequency spectrum above 1 GHz was investigated.



#### 5.2.2 Test Equipment

| Test Equipment                       | Brand       | Model No.              | Serial No.        | Calibration<br>Date | Next<br>Calibration<br>Date |
|--------------------------------------|-------------|------------------------|-------------------|---------------------|-----------------------------|
| EMI Test<br>Receiver                 | R&S         | ESU40                  | 100381            | 2020/05/29          | 2021/05/28                  |
| Horn Antenna                         | EMCO        | 3115                   | 9906-5822         | 2020/05/07          | 2021/05/06                  |
| Pre-Amplifier                        | SCHWARZBECK | BBV9718                | 9718-004          | 2019/10/16          | 2020/10/14                  |
| 966-1(A) Cable                       | SUHNER      | SMA /<br>SUCOFLEX 104  | 29510614          | 2020/04/13          | 2021/04/12                  |
| 966-1(B) Cable                       | JUNFLON     | SMA /<br>J12J100880-00 | AUG-26-08-<br>001 | 2020/04/13          | 2021/04/12                  |
| 966-1_3m<br>Semi-Anechoic<br>Chamber | 966_1       | CEM-966_1              | N/A               | 2020/03/02          | 2021/03/01                  |
| Test software                        | Audix       | e3                     | V4.2004011<br>2L  | NCR                 | NCR                         |

Note: No Calibration Required (NCR).

#### 5.2.3 Radiated Emission Limit

| Frequency | Distance | Class A E                 | quipment               |
|-----------|----------|---------------------------|------------------------|
| (GHz)     | (meter)  | Average limit<br>(dBμV/m) | Peak limit<br>(dBµV/m) |
| 1~3       | 3        | 56                        | 76                     |
| 3~6       | 3        | 60                        | 80                     |

Note: The lower limit applies at the transition frequency.



#### 5.2.4 Radiated Emission Test Data above 1 GHz

| Polarity:             | Vertical |     |            |               |
|-----------------------|----------|-----|------------|---------------|
| Temperature:          | 24       | °C  | Model No.: | MTC-7010W     |
| Relative Humidity:    | 55       | %   | Test Date: | Jun. 03, 2020 |
| Atmospheric Pressure: | 1008     | hPa | Remark:    | N/A           |

| Freq     | Pol/Phase | Factor | Read<br>Level | Level  | Limit<br>Line | Over<br>Limit | Remark  |
|----------|-----------|--------|---------------|--------|---------------|---------------|---------|
| MXz      |           | dB     | dBu∛          | dBuV/m | dBu∛/m        | dB            |         |
| 1065.000 | VERTICAL  | -12.09 | 63.71         | 51.62  | 76.00         | -24.38        | Peak    |
| 1185.000 | VERTICAL  | -11.18 | 73.55         | 62.37  | 76.00         | -13.63        | Peak    |
| 1185.000 | VERTICAL  | -11.18 | 67.00         | 55.82  | S6.00         | -0.18         | Average |
| 1325.000 | VERTICAL  | -11.48 | 60.74         | 49.26  | 76.00         | -26.74        | Peak -  |
| 1590.000 | VERTICAL  | -9.99  | 57.47         | 47.48  | 76.00         | -28.52        | Peak    |
| 1785.000 | VERTICAL  | -8.07  | 55.63         | 47.55  | 76.00         | -28.45        | Peak    |
| 2120.000 | VERTICAL  | -6.40  | 56.02         | 49.62  | 76.00         | -26.38        | Peak    |
| 2410.000 | VERTICAL  | -4.32  | 58.88         | 54.56  | 76.00         | -21.44        | Peak    |
| 3000.000 | VERTICAL  | -1.46  | 46.91         | 45.45  | 76.00         | -30.55        | Peak    |

Remark:

1. Level  $(dB\mu V/m) = Factor (dB) + Read Level (dB\mu V)$ 

2. Factor = Antenna Factor (dB/m) + Cable Loss (dB) – Amplifier Gain (dB)

(\*The Amplifier Gain depended on measure equipment, see test equipment list.)

3. Over Limit (dB) = Level (dB $\mu$ V/m) – Limit Line (dB $\mu$ V/m)





| Polarity:             | Horizontal |     |            |               |
|-----------------------|------------|-----|------------|---------------|
| Temperature:          | 24         | °C  | Model No.: | MTC-7010W     |
| Relative Humidity:    | 55         | %   | Test Date: | Jun. 03, 2020 |
| Atmospheric Pressure: | 1008       | hPa | Remark:    | N/A           |

| Freq                                                                 | Pol/Phase                                                                        | Factor                                                | Read<br>Level                                      | Level                                              | Limit<br>Line                                      | Over<br>Limit                                            | Remark                                               |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|
| MXz                                                                  |                                                                                  | āB                                                    | ₫BuŸ                                               | ₫Bu∛/m                                             | āBu∛/m                                             | dB                                                       |                                                      |
| 1065.000<br>1185.000<br>1325.000<br>1590.000<br>1785.000<br>2120.000 | KORIZONTAL<br>KORIZONTAL<br>KORIZONTAL<br>HORIZONTAL<br>KORIZONTAL<br>KORIZONTAL | -12.09<br>-11.18<br>-11.48<br>-9.99<br>-8.07<br>-6.40 | 58.84<br>66.02<br>62.64<br>61.23<br>54.33<br>53.90 | 46.74<br>54.85<br>51.16<br>51.24<br>46.26<br>47.50 | 76.00<br>76.00<br>76.00<br>76.00<br>76.00<br>76.00 | -29.26<br>-21.15<br>-24.84<br>-24.76<br>-29.74<br>-28.50 | Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak |
| 2410.000<br>2655.000                                                 | HORIZONTAL<br>HORIZONTAL                                                         | -4.32<br>-3.43                                        | 51.45<br>50.09                                     | 47.13<br>46.66                                     | 76.00<br>76.00                                     | -28.87<br>-29.34                                         | Peak<br>Peak                                         |

Remark:

1. Level  $(dB\mu V/m) = Factor (dB) + Read Level (dB\mu V)$ 

2. Factor = Antenna Factor (dB/m) + Cable Loss (dB) – Amplifier Gain (dB)

(\*The Amplifier Gain depended on measure equipment, see test equipment list.)

3. Over Limit (dB) = Level (dB $\mu$ V/m) – Limit Line (dB $\mu$ V/m)





Intertek Report No.: 200500247TWN-001 Page: 27 of 68

#### 6. Harmonics Test

#### P = 26.6 Watt

According to the EN61000-3-2 requirement for rated power of all applications, there are no limits apply for equipment with an active input power up to and including 75W. For class A equipment, if the active input power is lower than 75W, the equipment shall not be tested.



#### 7. Voltage Fluctuations-Flicker Test

#### 7.1 Test Procedure

The voltage changes at the supply terminals were measured using the voltage method.

The test voltage was supplied from an AC source which meets the requirements according to the standard. The voltage source has virtually zero internal impedance and is connected

(1 phase) Z =  $0.4 + j 0.25\Omega$  (total impedance)

(3 phases) Impedance in line conductor: Za =  $0.25 + j 0.25 \Omega$ Impedance in neutral conductor: Zn =  $0.15 + j 0.10 \Omega$ 

The observation period,  $T_{P}$  for the assessment of flicker values by flicker measurement, flicker simulation, or analytical method shall be:

- for  $P_{st}$ ,  $T_P = 10$  min
- for  $P_{lt}$ ,  $T_P = 2 h$

The observation period shall include that part of the whole operation cycle in which the equipment under test produces the most unfavorable sequence of voltage changes.

24 measurements have been tasted and calculated the average from 22 records, exclude highest and lowest.

#### 7.2 Test Equipment

| Test Equipment/<br>Test site   | Brand  | Model No.     | Serial No. | Calibration<br>Date | Next<br>Calibration Date |
|--------------------------------|--------|---------------|------------|---------------------|--------------------------|
| Harmonic/<br>Flick Test System | TESEQ  | Profline 2105 | 1537A00781 | 2019/11/07          | 2020/11/05               |
| Test software                  | AMETEK | Win2100       | V4.23      | NCR                 | NCR                      |

Note: No Calibration Required (NCR).



#### 7.3 Test result

#### SUMMARY RESULT: PASS

| Temperature:          | 24       | °C  | Model No.: |      | MTC-701    | LOW          |
|-----------------------|----------|-----|------------|------|------------|--------------|
| Relative Humidity:    | 53       | %   | Test Date: |      | Jun. 02, 1 | 2020         |
| Atmospheric Pressure: | 1004     | hPa | Remark:    |      | N/A        |              |
|                       |          |     | NAIT       | ргсі |            |              |
|                       | EUT DAIA | LI  |            | KESU | JLI        | IESI ENABLED |
| T-max (mS)            | 0        | 50  | 00.0       | PAS  | is is      | X            |
| Highest dc (%)        | 0.00     | 3   | 3.30       | PAS  | S          | X            |
| d <sub>max</sub> %    | 0.40     | 4   | .00        | PAS  | S          | X            |
| Highest Pst           | 0.092    | 1.  | .000       | PAS  | S          | X            |
| Highest Plt           | 0.058    | 0.  | .650       | PAS  | S          | X            |



#### 8. Electrostatic Discharge Immunity Test

#### 8.1 Purpose

The object of the test is to evaluate the ESD immunity performance of EUT.

#### 8.2 Test Set-Up

A horizontal coupling plane (HCP) was placed on a non-metallic table 0.8 meter above a reference ground plane (RGP) and connected to it with a cable with two 470 k $\Omega$  resistors. The EUT was placed on an insulation sheet on the HCP and was operated according to the specified operating mode.

A vertical coupling plane (VCP) was connected to the RGP with a cable with two 470  $k\Omega$  resistors.

#### 8.3 Test Specification

| Test level: | Air discharge     | <br>+/- 8 kV |
|-------------|-------------------|--------------|
|             | Contact discharge | <br>+/- 4 kV |

Single discharge at 1 second interval positive discharge and negative discharge The selected test points are listed in this table, the numbers refer to the figures attached.

#### 8.4 Test Equipment

| Test Equipment/<br>Test site      | Brand    | Model No. | Serial No. | Calibration<br>Date | Next<br>Calibration Date |
|-----------------------------------|----------|-----------|------------|---------------------|--------------------------|
| Electrostatic<br>Discharge System | NoiseKen | ESS-2002  | ESS0291088 | 2019/08/17          | 2020/08/15               |



#### 8.5 Test Result

| Temperature:          | 24   | °C  | Model No.: | MTC-7010W     |
|-----------------------|------|-----|------------|---------------|
| Relative Humidity:    | 52   | %   | Test Date: | Jun. 04, 2020 |
| Atmospheric Pressure: | 1003 | hPa | Remark:    | N/A           |

| Point of Discharge | Applied<br>Voltage<br>(kV) | Number of<br>Discharge | Test Result | Performance<br>Criterion |
|--------------------|----------------------------|------------------------|-------------|--------------------------|
|                    | ±2                         | 20                     | PASS        | А                        |
| Contact lest Point | ±4                         | 20                     | PASS        | А                        |
|                    | ±2                         | 20                     | PASS        | А                        |
| Air Test Point     | ±4                         | 20                     | PASS        | А                        |
|                    | ±8                         | 20                     | PASS        | А                        |
| VCP                | ±2                         | 25                     | PASS        | А                        |
| (4 sides)          | ±4                         | 25                     | PASS        | А                        |
| НСР                | ±2                         | 25                     | PASS        | А                        |
| (4 sides)          | ±4                         | 25                     | PASS        | А                        |

# **Description of Discharge Point**

| Contact Discharge <u>15</u> Test points |                        | Air Discharge |          |                       |
|-----------------------------------------|------------------------|---------------|----------|-----------------------|
| $\square$                               | Metallic Screws        |               |          | Plastic Screws        |
| $\square$                               | Metallic Case          |               |          | Plastic Case (gap)    |
| $\square$                               | Metallic Connect ports |               |          | Plastic Connect ports |
| $\square$                               | Metallic Junctions     |               |          | Plastic Junctions     |
|                                         | Others:                |               |          | LED indicator         |
|                                         |                        |               | $\times$ | Panel Board           |
|                                         |                        |               |          | Others:               |



Intertek Report No.: 200500247TWN-001 Page: 32 of 68













#### 9. Radiated, Radio-Frequency, Electromagnetic Field Immunity Test

#### 9.1 Purpose

This test method subjects the EUT to a power source of disturbance comprising electric and magnetic field, simulating those coming from intentional RF transmitters.

#### 9.2 Test Set-Up

The EUT was placed on a non-metallic table 0.8 meter above the reference ground plane (RGP) and was operated according to its specified operating mode.

Ferrite tiles/absorbers were placed on the RGP between the EUT and the antenna to reduce the reflections from the RGP. The EUT and its cables were exposed for the electromagnetic field for 1.5meter vertically and 1.5m horizontally.

The distance between antenna and EUT is 3 meter.

For acoustic measurements on loudspeakers



The microphone is connected via the cable to a suitable amplifier. Ensure that there is minimal acoustic loss between EUT and microphone.

#### For audio output port measurements



The fliter is the audio fliter specified in G.6.1 and is typically incorporated into the audio meter. Additional flitering might be necessary to ensure that the RF disturbance signal does not interfere with the measurement.



# 9.3 Test Specification

| Frequency range | Test field strength<br>V/m | Modulation   |
|-----------------|----------------------------|--------------|
| 80MHz ~ 1GHz    |                            |              |
| 1800MHz ±1 %    |                            |              |
| 2600MHz ±1 %    | 3                          | 1 kHz 80% AM |
| 3500MHz ±1 %    |                            |              |
| 5000MHz ±1 %    |                            |              |

| The frequency steps | :1 % , Log sweep |
|---------------------|------------------|
| Dwell time          | : 3 sec          |
| Test ports          | : Enclosure port |

# 9.4 Test Equipment

| Test Equipment/<br>Test site         | Brand   | Model No. | Serial No. | Calibration<br>Date | Next<br>Calibration Date |
|--------------------------------------|---------|-----------|------------|---------------------|--------------------------|
| 733 Compact Full<br>Anechoic Chamber | Comtest | 9708093   | N/A        | 2019/09/12          | 2020/09/10               |
| Signal Generator                     | R&S     | SMB100A   | 102385     | 2020/02/17          | 2021/02/15               |
| Field Meter                          | Narda   | NBM-520   | D-1426     | 2019/06/09          | 2022/06/07               |
| Field Probe                          | Narda   | EF0691    | H-0199     | 2019/06/09          | 2022/06/07               |
| Test software                        | Audix   | i2        | 5.160923   | NCR                 | NCR                      |

Note: No Calibration Required (NCR).



#### 9.5 Generation of the Electromagnetic Field

The electromagnetic field is generated from a computer controlled signal generator. The output power is amplified and then radiated from broadband log periodic antennas. For each sweep a pre-recorded empty chamber calibration file is used to establish the required field strength. When using these files the field strength inside an area of 1.5/1.0 meter x 1.5 meter is in accordance with the standard.

#### 9.6 Test Results

| Temperature:          | 24   | °C  | Model No.: | MTC-7010W     |
|-----------------------|------|-----|------------|---------------|
| Relative Humidity:    | 52   | %   | Test Date: | Jun. 02, 2020 |
| Atmospheric Pressure: | 1003 | hPa | Remark:    | N/A           |

Exposed Side: I Front I Left Rear Right

| Frequency       | Antenna<br>Polarization | Test Level | Test Result | Performance<br>Criterion |
|-----------------|-------------------------|------------|-------------|--------------------------|
| 80 MHz to 1 GHz | Vertical                | 3V/m       | PASS        | А                        |
| 80 MHz to 1 GHz | Horizontal              | 3V/m       | PASS        | А                        |
| 1800MHz ±1 %    | Vertical                | 3V/m       | PASS        | А                        |
| 1800MHz ±1 %    | Horizontal              | 3V/m       | PASS        | А                        |
| 2600MHz ±1 %    | Vertical                | 3V/m       | PASS        | А                        |
| 2600MHz ±1 %    | Horizontal              | 3V/m       | PASS        | А                        |
| 3500MHz ±1 %    | Vertical                | 3V/m       | PASS        | А                        |
| 3500MHz ±1 %    | Horizontal              | 3V/m       | PASS        | А                        |
| 5000MHz ±1 %    | Vertical                | 3V/m       | PASS        | А                        |
| 5000MHz ±1 %    | Horizontal              | 3V/m       | PASS        | А                        |



#### 10. Electrical Fast Transient/Burst Immunity Test

#### 10.1 Purpose

The purpose of this test is to evaluate the EUT performance during the repetitive transient bursts applied to power port and ports for I/O ports.

#### 10.2 Test Set-Up

For I/O ports testing, the EUT was placed on a non-metallic support 0.1±0.01 meter above a reference ground plane (RGP) and operated in the operating mode specified.

Applicable only to cables which according to the manufacturer's specification supports communication on cable lengths greater than 3 meter.

#### 10.3 Test Specification

| Open-circuit output test voltage (±10%) and repetition rate of the impulses (±20%)                                                                                                                                                                                                                                                                                                                   |                          |                         |                                                         |                 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|---------------------------------------------------------|-----------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                      | On power supply          |                         | On I/O (Input/Output) signal,<br>Data and control ports |                 |  |
| Level                                                                                                                                                                                                                                                                                                                                                                                                | Voltage peak             | Repetition rate         | Voltage peak                                            | Repetition rate |  |
|                                                                                                                                                                                                                                                                                                                                                                                                      | (kV)                     | (kHz)                   | (kV)                                                    | (kHz)           |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5                      | 5 or 100                | 0.25                                                    | 5 or 100        |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                    | 1                        | 5 or 100                | 0.5                                                     | 5 or 100        |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                    | 2                        | 5 or 100                | 1                                                       | 5 or 100        |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                    | 4                        | 5 or 100                | 2                                                       | 5 or 100        |  |
| X <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                     | Special                  | Special                 | Special                                                 | Special         |  |
| NOTE 1 Use of 5 kHz repetition rates is traditional; however, 100 kHz is closer to reality. Product committees should determine which frequencies are relevant for specific products or product types.<br>NOTE 2 With some products, there may be no clear distinction between power ports and I/O ports, in which case it is up to product committees to make this determination for test purposes. |                          |                         |                                                         |                 |  |
| <ol> <li>"x" is an open le<br/>specification</li> </ol>                                                                                                                                                                                                                                                                                                                                              | evel. The level has to b | be specified in the ded | cated equipment                                         |                 |  |



#### 10.4 Test Equipment

| Test Equipment/<br>Test site | Brand | Model No. | Serial No. | Calibration<br>Date | Next<br>Calibration<br>Date |
|------------------------------|-------|-----------|------------|---------------------|-----------------------------|
| EMC Test System              | TESEQ | NSG 3060  | 1366       | 2019/11/05          | 2020/11/03                  |
| CDN 3061                     | TESEQ | CDN 3061  | 1342       | 2019/11/05          | 2020/11/03                  |
| CDN 3063                     | TESEQ | CDN 3063  | 1992       | 2019/11/05          | 2020/11/03                  |
| EFT Clamp                    | TESEQ | CDN 3425  | 1682       | 2019/11/04          | 2020/11/02                  |
| Test software                | TESEQ | WIN3000   | 1.1.0      | NCR                 | NCR                         |

Note: No Calibration Required (NCR).

#### 10.5 Test Results

| Temperature:          | 24   | °C  | Model No.: | MTC-7010W     |
|-----------------------|------|-----|------------|---------------|
| Relative Humidity:    | 52   | %   | Test Date: | Jun. 03, 2020 |
| Atmospheric Pressure: | 1003 | hPa | Remark:    | N/A           |

| Level  | Polarity | Repetition<br>Rate | Power supply<br>port<br>Test Result | Signal port &<br>Control port<br>Test Result<br>(see Note 1) | Performance<br>Criterion |
|--------|----------|--------------------|-------------------------------------|--------------------------------------------------------------|--------------------------|
| 0.5 kV | +        | 5 kHz              | -                                   | PASS                                                         | А                        |
| 0.5 kV | -        | 5 kHz              | -                                   | PASS                                                         | А                        |
| 1 kV   | +        | 5 kHz              | PASS                                | -                                                            | A                        |
| 1 kV   | -        | 5 kHz              | PASS                                | _                                                            | A                        |

Note 1: Signal Line and Control Line were tested for: Ethernet port



#### **11. Surge Immunity Test**

#### 11.1 Purpose

The object of this test is to establish a common reference to evaluate the performance of EUT when subjected to high-energy disturbances on the power and interconnection lines.

#### 11.2 Test Set-Up

The EUT was placed on a non-metallic support 0.8 meter above a reference ground plane and was put into operation according to the specified operating mode.

#### **11.3 Test Specification**

#### For power supply line

| Level                                                                                | Open circuit test voltage<br>kV +/- 10% | Remark               |  |  |  |
|--------------------------------------------------------------------------------------|-----------------------------------------|----------------------|--|--|--|
| 1                                                                                    | 0.5                                     | L to N               |  |  |  |
| 2                                                                                    | 1.0                                     | L to N               |  |  |  |
| 3                                                                                    | 2.0                                     | L to Gnd<br>N to Gnd |  |  |  |
| 4                                                                                    | 4.0                                     | -                    |  |  |  |
| Х                                                                                    | Special                                 | -                    |  |  |  |
| Note: "X" is an open class. This level can be specified in the product specification |                                         |                      |  |  |  |

Surge wave form: 1.2 x 50 μs, Repetition rate: 1/min (max)



#### 11.4 Test Equipment.

| Test Equipment/<br>Test site | Brand | Model No. | Serial No. | Calibration<br>Date | Next<br>Calibration<br>Date |
|------------------------------|-------|-----------|------------|---------------------|-----------------------------|
| EMC Test System              | TESEQ | NSG 3060  | 1366       | 2019/11/05          | 2020/11/03                  |
| CDN 3061                     | TESEQ | CDN 3061  | 1342       | 2019/11/05          | 2020/11/03                  |
| CDN HSS-2                    | TESEQ | CDN HSS-2 | 38145      | 2019/11/04          | 2020/11/02                  |
| CDN 3063                     | Teseq | CDN 3063  | 1992       | 2019/11/05          | 2020/11/03                  |
| Test software                | TESEQ | WIN3000   | 1.1.0      | NCR                 | NCR                         |

Note: No Calibration Required (NCR).

#### 11.5 Test Results

#### 11.5.1 Main power ports

| Temperature:          | 24   | °C  | Model No.: | MTC-7010W     |
|-----------------------|------|-----|------------|---------------|
| Relative Humidity:    | 52   | %   | Test Date: | Jun. 03, 2020 |
| Atmospheric Pressure: | 1003 | hPa | Remark:    | N/A           |

# Test 5 times for each voltage

| Phase  |               |          | Test Result |      |      |      | Performance |
|--------|---------------|----------|-------------|------|------|------|-------------|
| Volt   | Mode          | Polarity | <b>0</b> °  | 90°  | 180° | 270° | Criterion   |
|        | L to N        | +        | PASS        | PASS | PASS | PASS | А           |
| U.5 KV | U.5 KV L TO N | -        | PASS        | PASS | PASS | PASS | А           |
| 1 1/1  | L to N        | +        | PASS        | PASS | PASS | PASS | А           |
| 1 KV   | LION          | -        | PASS        | PASS | PASS | PASS | А           |
|        | L to Cod      | +        | PASS        | PASS | PASS | PASS | А           |
|        | -             | PASS     | PASS        | PASS | PASS | А    |             |
| 2 KV   | N to Cod      | +        | PASS        | PASS | PASS | PASS | А           |
|        | N LO GNO      | -        | PASS        | PASS | PASS | PASS | А           |



#### 12. Immunity to Conducted Disturbances, Inducted by Radio-Frequency Fields

#### 12.1 Purpose

The test method subjects the EUT to a power source of disturbance comprising electric and magnetic field, simulating those coming from intentional RF transmitters. The measurement is for evaluating the performance of EUT when subjected to RF conducted disturbance.

#### 12.2 Test Set-Up

The EUT was placed on a non-metallic support 0.1 meter above a reference ground plane (RGP) with the coupling/decoupling network (CDN) placed 0.3 meter from the EUT on the RGP.

For acoustic measurements on loudspeakers



The microphone is connected via the cable to a suitable amplifier. Ensure that there is minimal acoustic loss between EUT and microphone.

#### For audio output port measurements



The filter is the audio filter specified in G.6.1 and is typically incorporated into the audio meter. Additional filtering might be necessary to ensure that the RF disturbance signal does not interfere with the measurement.



# 12.3 Test Specification

| Frequency range<br>(MHz) | Test Voltage<br>(Vrms) | Modulation    |
|--------------------------|------------------------|---------------|
| 0.15MHz ~ 10MHz          | 3                      | 1 kHz 80 % AM |
| 10MHz ~ 30MHz            | 3~1                    | 1 kHz 80 % AM |
| 30MHz ~ 80MHz            | 1                      | 1 kHz 80 % AM |

# 12.4 Test Equipment

| Test Equipment/<br>Test site | Brand     | Model No.       | Serial<br>No. | Calibration<br>Date | Next<br>Calibration<br>Date |
|------------------------------|-----------|-----------------|---------------|---------------------|-----------------------------|
| CS test system               | TESEQ     | NSG 4070B-35    | 41146         | 2019/08/26          | 2020/08/24                  |
| CDN                          | Schaffner | CDN M016        | 21272         | 2020/06/01          | 2021/05/31                  |
| CDN                          | Fischer   | FCC-801-M2-16A  | 04017         | 2019/08/27          | 2020/08/25                  |
| Clamp                        | TESEQ     | KEMZ 801A       | 41333         | 2019/08/27          | 2020/08/25                  |
| CDN                          | Fischer   | FCC-801-M1-16A  | 04015         | 2019/08/27          | 2020/08/25                  |
| CDN                          | Fischer   | FCC-801-T8-RJ45 | 08036         | 2019/08/27          | 2020/08/25                  |
| CDN                          | Schaffner | CDN T400        | 19096         | 2019/08/27          | 2020/08/25                  |
| Test software                | TESEQ     | NSG4070         | V 1.2.0       | NCR                 | NCR                         |

Note: No Calibration Required (NCR)



#### **12.5** Generation and Calibration of the Disturbance Signal

The disturbance signal is generated from a computer controlled signal generator. The output signal is amplified and injected to the CDN/injection clamp. The disturbance signal level was calibrated as specified in the standard. A power meter was connected to the EUT side of the CDN through a 150 -50 $\Omega$  adapter. The auxiliary equipment (AE) side of the network was terminated with 150 $\Omega$  to ground during the calibration. The generator settings obtained during the calibration procedure were later repeated in the tests.

#### 12.6 Test Results

| Temperature:          | 24   | °C  | Model No.: | MTC-7010W     |
|-----------------------|------|-----|------------|---------------|
| Relative Humidity:    | 52   | %   | Test Date: | Jun. 02, 2020 |
| Atmospheric Pressure: | 1003 | hPa | Remark:    | N/A           |

| Frequency       | Test Port | Test Level | Test Result | Performance Criterion |
|-----------------|-----------|------------|-------------|-----------------------|
| 0.15MHz ~ 10MHz |           | 3V         | PASS        | А                     |
| 10MHz ~ 30MHz   | AC        | 3 ~ 1V     | PASS        | А                     |
| 30MHz ~ 80MHz   |           | 1V         | PASS        | А                     |
| 0.15MHz ~ 10MHz |           | 3V         | PASS        | А                     |
| 10MHz ~ 30MHz   | Ethernet  | 3 ~ 1V     | PASS        | А                     |
| 30MHz ~ 80MHz   |           | 1V         | PASS        | А                     |



#### **13.** Power Frequency Magnetic Field Immunity Test

#### 13.1 Purpose

The measurement is for evaluating the performance of EUT, when subject to power frequency magnetic field disturbance.

#### 13.2 Test Set-Up

The EUT was placed on a wooden table above a reference RGP with the coupling loop antenna arrange the EUT on the RGP.

#### 13.3 Test Condition

Test levels for continuous field

| Level            | Magnetic field strength<br>(A/m) |  |  |  |
|------------------|----------------------------------|--|--|--|
| 1                | 1                                |  |  |  |
| 2                | 3                                |  |  |  |
| 3                | 10                               |  |  |  |
| 4                | 30                               |  |  |  |
| 5                | 100                              |  |  |  |
| X <sup>(1)</sup> | Special                          |  |  |  |

Note:

 "x" is an open level. This level can be given in the product specification. Test levels for short duration: 1s to 3s

| Level                                                                                                                                                          | Magnetic field strength<br>(A/m) |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|--|
| 1                                                                                                                                                              | n.a <sup>(2)</sup>               |  |  |  |  |
| 2                                                                                                                                                              | n.a <sup>(2)</sup>               |  |  |  |  |
| 3                                                                                                                                                              | n.a <sup>(2)</sup>               |  |  |  |  |
| 4                                                                                                                                                              | 300                              |  |  |  |  |
| 5                                                                                                                                                              | 1000                             |  |  |  |  |
| X <sup>(1)</sup>                                                                                                                                               | Special                          |  |  |  |  |
| Note:<br>1. "x" is an open level. This level, as well the<br>duration of the test, can be given in this<br>product specification.<br>2. "n.a" = not applicable |                                  |  |  |  |  |



### 13.4 Test Equipment.

| Test Equipment/<br>Test site | Brand | Model No. | Serial No. | Calibration<br>Date | Next<br>Calibration<br>Date |
|------------------------------|-------|-----------|------------|---------------------|-----------------------------|
| Magnetic test<br>system      | PMM   | PMM1008   | 000J90601  | 2018/11/20          | 2020/11/18                  |
| Test software                | РММ   | PMM1008   | V 1.19     | NCR                 | NCR                         |

Note: No Calibration Required (NCR).

#### 13.5 Test Result

| Temperature:          | 24   | °C  | Model No.: | MTC-7010W        |
|-----------------------|------|-----|------------|------------------|
| Relative Humidity:    | 52   | %   | Test Date: | Jun. 03, 2020    |
| Atmospheric Pressure: | 1003 | hPa | Remark:    | 230 Vac, 50/60Hz |

| C     | Continuous Field (50 or 60 Hz) |        |           |         | Short Duration |         |        |                       |   |  |
|-------|--------------------------------|--------|-----------|---------|----------------|---------|--------|-----------------------|---|--|
| Level | H.Field                        | Х      | Y         | Z       | Level          | H.Field | Х      | Y                     | Z |  |
|       | (A/m)                          | Perfor | mance Cri | iterion |                | (A/m)   | Perfor | Performance Criterion |   |  |
| 1     | 1                              | А      | А         | А       | 1              | N/A     | -      | -                     | - |  |
| 2     | 3                              | -      | -         | -       | 2              | N/A     | -      | -                     | - |  |
| 3     | 10                             | -      | -         | -       | 3              | N/A     | -      | -                     | - |  |
| 4     | 30                             | -      | -         | -       | 4              | 300     | -      | -                     | - |  |
| 5     | 100                            | -      | -         | -       | 5              | 1000    | -      | -                     | - |  |
| Х     | Special                        | -      | -         | -       | Х              | Special | -      | -                     | - |  |

Note: 1. "-" means not applicable

2. Magnetic field ambient level: <0.01 mG



#### 14. Voltage Dips, Short Interruptions and Voltage Variations Immunity Test

#### 14.1 Purpose

The object of this standard is to establish a common reference for evaluating the immunity of electrical and electronic equipment when subjected to voltage dips, short interruptions, and voltage variations.

#### 14.2 Test Set-Up

The EUT was placed on a non-metallic support 0.8 meter above a reference ground plane and was put into operation according to the specified operating mode.

#### 14.3 Test Specification

#### For 50 Hz

| Test Level | Reduction<br>'% of rated | Test<br>Level % U⊤ | Duration<br>Period | Tests | Recovery<br>Time(Sec) |
|------------|--------------------------|--------------------|--------------------|-------|-----------------------|
| 1          | >95%                     | <5%                | 0.5                | 3     | 10                    |
| 2          | 30%                      | 70%                | 25                 | 3     | 10                    |
| 3          | >95%                     | <5%                | 250                | 3     | 10                    |

#### For 60Hz

| Test Level | Reduction<br>'% of rated | Test<br>Level % U⊤ | Duration<br>Period | Tests | Recovery<br>Time(Sec) |
|------------|--------------------------|--------------------|--------------------|-------|-----------------------|
| 1          | >95%                     | <5%                | 1                  | 3     | 10                    |
| 2          | 30%                      | 70%                | 30                 | 3     | 10                    |
| 3          | >95%                     | <5%                | 300                | 3     | 10                    |



#### 14.4 Test Equipment

| Test Equipment/<br>Test site         | Brand  | Model No. | Serial No. | Calibration<br>Date | Next<br>Calibration<br>Date |
|--------------------------------------|--------|-----------|------------|---------------------|-----------------------------|
| Advanced EMC<br>Immunity Test System | Keytek | EMC Pro   | 9807103    | 2019/10/29          | 2020/10/27                  |
| Test software                        | KeyTek | CEWare 32 | 4.00       | NCR                 | NCR                         |

Note: No Calibration Required (NCR).

#### 14.5 Generation of the Disturbance Signal

The disturbance signal is generated using a programmable AC power source with pre-programmed test sequences for each test.

#### 14.6 Test Result

| Temperature:          | 24   | °C  | Model No.: | MTC-7010W          |
|-----------------------|------|-----|------------|--------------------|
| Relative Humidity:    | 52   | %   | Test Date: | Jun. 03, 2020      |
| Atmospheric Pressure: | 1003 | hPa | Remark:    | 100/230 Vac, 50 Hz |

| Test Level | Reduction<br>'% of rated | Test Level<br>(% U <sub>T)</sub> | Duration<br>Period | Tests | Recovery<br>Time(Sec) | Performance<br>Criterion |
|------------|--------------------------|----------------------------------|--------------------|-------|-----------------------|--------------------------|
| 1          | >95 %                    | <5 %                             | 0.5                | 3     | 10                    | А                        |
| 2          | 30 %                     | 70 %                             | 25                 | 3     | 10                    | А                        |
| 3          | >95 %                    | <5 %                             | 250                | 3     | 10                    | С                        |

| Temperature:          | 24   | °C  | Model No.: | MTC-7010W          |
|-----------------------|------|-----|------------|--------------------|
| Relative Humidity:    | 52   | %   | Test Date: | Jun. 03, 2020      |
| Atmospheric Pressure: | 1003 | hPa | Remark:    | 100/230 Vac, 60 Hz |

| Test Level | Reduction<br>'% of rated | Test Level<br>(% U <sub>T)</sub> | Duration<br>Period | Tests | Recovery<br>Time(Sec) | Performance<br>Criterion |
|------------|--------------------------|----------------------------------|--------------------|-------|-----------------------|--------------------------|
| 1          | >95 %                    | <5 %                             | 1                  | 3     | 10                    | А                        |
| 2          | 30 %                     | 70 %                             | 30                 | 3     | 10                    | А                        |
| 3          | >95 %                    | <5 %                             | 300                | 3     | 10                    | С                        |



#### Appendix A: Uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| ltem                                                                                                                                               | Uncertainty |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Conducted disturbance measurements at a mains port from 9 kHz to 30 MHz using a 50 $\Omega$ /50 $\mu$ H +5 $\Omega$ artificial mains network (AMN) | 2.52 dB     |
| Conducted disturbance measurements at a telecommunication port from 150<br>kHz to 30 MHz using an asymmetrical artificial network (AAN)            | 4.02 dB     |
| Vertically polarized radiated disturbances from 30MHz~1GHz in a open area test site at a distance of 10m                                           | 4.90 dB     |
| Horizontally polarized radiated disturbances from 30MHz~1GHz in a open<br>area test site at a distance of 10m                                      | 4.89 dB     |
| Vertically polarized radiated disturbances from 30MHz~1GHz in a<br>semi-anechoic chamber at a distance of 3m                                       | 5.10 dB     |
| Horizontally polarized radiated disturbances from 30MHz~1GHz in a<br>semi-anechoic chamber at a distance of 3m                                     | 5.18 dB     |
| Radiated disturbances measurements from 1GHz~6GHz in a semi-anechoic chamber at a distance of 3m                                                   | 4.96 dB     |
| The measured induced current density due to the electric field from 20 kHz~10MHz                                                                   | 1.60 dB     |
| HARMONIC                                                                                                                                           | 0.15 %      |
| FLICKER                                                                                                                                            | 0.10 %      |
| ESD                                                                                                                                                | 7.18 %      |
| RS                                                                                                                                                 | 2.20 dB     |
| RS (Audio)                                                                                                                                         | 1.49 dB     |
| EFT                                                                                                                                                | 6.20 %      |
| SURGE                                                                                                                                              | 5.60 %      |
| CS                                                                                                                                                 | 1.06 dB     |
| CS (Audio)                                                                                                                                         | 1.18 dB     |
| Mag.                                                                                                                                               | 1.00 %      |
| DIP                                                                                                                                                | 1.60 %      |
| Ring Wave                                                                                                                                          | 5.50 %      |
| Immunity to low-frequency signals                                                                                                                  | 0.17 %      |



Intertek Report No.: 200500247TWN-001 Page: 49 of 68

#### Appendix B1: External photo of EUT























Intertek Report No.: 200500247TWN-001 Page: 53 of 68

#### Appendix B2: Internal photo of EUT







Intertek Report No.: 200500247TWN-001 Page: 54 of 68







Intertek Report No.: 200500247TWN-001 Page: 55 of 68







Intertek Report No.: 200500247TWN-001 Page: 56 of 68







Intertek Report No.: 200500247TWN-001 Page: 57 of 68





Intertek Report No.: 200500247TWN-001 Page: 58 of 68

#### Appendix C1: Conducted Emission Test Set-up







Intertek Report No.: 200500247TWN-001 Page: 59 of 68

# Appendix C2: ISN Test Set-up





Intertek Report No.: 200500247TWN-001 Page: 60 of 68

#### Appendix C3: Radiated Emission Test Set-up (Below 1GHz)







Intertek Report No.: 200500247TWN-001 Page: 61 of 68

#### Appendix C4: Radiated Emission Test Set-up (Above 1GHz)





Intertek Report No.: 200500247TWN-001 Page: 62 of 68

# Appendix C5: Harmonics\ Flicker Test Set-up





Intertek Report No.: 200500247TWN-001 Page: 63 of 68

# Appendix C6: ESD Test Set-up





Intertek Report No.: 200500247TWN-001 Page: 64 of 68

#### Appendix C7: RS Test Set-up





Intertek Report No.: 200500247TWN-001 Page: 65 of 68

# Appendix C8: EFT Signal Test Set-up





Intertek Report No.: 200500247TWN-001 Page: 66 of 68

# Appendix C9: EFT\ Surge\Dip Test Set-up





Intertek Report No.: 200500247TWN-001 Page: 67 of 68

# Appendix C10: CS Test Set-up





Intertek Report No.: 200500247TWN-001 Page: 68 of 68



# Appendix C11: Power Frequency Magnetic Field Immunity Test Set-up